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Abstract
The uncertainty relations for the position and momentum of a quantum particle
on a circle are identified as minimized by the corresponding coherent states.
The squeezed states in the case of the circular motion are introduced and
discussed in the context of the uncertainty relations.

PACS numbers: 02.30.Gp, 03.65.−w, 03.65.Sq

1. Introduction

The uncertainty relations are one of the most fundamental concepts of quantum theory. In
spite of its importance and long history [1–8], the problem of finding such relations in
the case of the quantum mechanics on a circle still remains open. In fact, the experience
with the standard Heisenberg uncertainty relations suggests that the uncertainty relations for
the quantum mechanics on a circle should be related to the corresponding coherent states.
Nevertheless, the existing approaches connecting the uncertainty relations with the coherent
states can hardly be called satisfactory.

In this paper we introduce new uncertainties for the position and momentum of a quantum
particle on a circle and new uncertainty relations referring to the very recently found coherent
states for the circular motion [9, 10]. We also introduce the squeezed states for the quantum
mechanics on a circle and discuss them in the context of the uncertainty relations.

We begin with a brief account of the alternative approaches linking the uncertainty
relations for a quantum particle on a circle to the coherent states. As far as we are aware there
are only two such approaches. In the first approach, we deal with the uncertainty relations
implied by the e(2) algebra satisfied by the angular momentum operator and the cosine and
sine of the angle operator

[Ĵ , cos ϕ̂] = ih̄ sin ϕ̂ [Ĵ, sin ϕ̂] = −ih̄ cos ϕ̂ [sin ϕ̂, cos ϕ̂] = 0. (1.1)
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These relations are of the form

�Ĵ� cos ϕ̂ � h̄

2
|〈sin ϕ̂〉| (1.2a)

�Ĵ� sin ϕ̂ � h̄

2
|〈cos ϕ̂〉| (1.2b)

� sin ϕ̂� cos ϕ̂ � 0. (1.2c)

The states minimizing (1.2b) [3] are referred to as the circular squeezed states. Recently, these
states have been applied in the study of Rydberg wave packets [8]. We point out that (1.2a)
and (1.2b) cannot be minimized simultaneously [8]. Let us write down the (normalized) wave
packets corresponding to the circular squeezed states, i.e. the position representation of these
states in the space of square integrable functions on a circle L2(S1). We have

fα,l(ϕ) = 1√
2πI0(2s)

exp[s cos(ϕ − α) + il(ϕ − α)] (1.3)

where the packet is peaked at α, l = 〈Ĵ 〉 is the expectation value of the angular momentum,
s is the squeezing and I0 is a modified Bessel function of the first kind. Of course, the wave
packet on a circle should be 2π-periodic. In view of (1.3) this implies that l is an integer. But
the classical angular momentum is an arbitrary real number. Therefore, the circular squeezed
states are not labelled by points of the classical phase space. Bearing in mind that the standard
coherent states for a particle on a real line are marked with points of the classical phase space
we conclude that (1.3) is a rather poor candidate to represent the coherent states for a particle
on a circle. On the other hand, it turns out that the uncertainty relations (1.2) cannot be used
for determining the correct coherent states for the quantum mechanics on a circle. In our
opinion the genuine coherent states for a quantum particle on a circle are those introduced
in our joint paper [9] as a solution of some eigenvalue equation (see the next section), and,
independently, by Gonzáles and del Olmo [10] who applied the Weil–Brezin–Zak transform.
An attempt to connect these coherent states for the quantum mechanics on a circle with the
uncertainty relation of the form [6, 10]

�2Ĵ�2(ϕ̂) � h̄2

4
(1.4)

where

�2(ϕ̂) = 1 − |〈U〉|2
|〈U〉|2 (1.5)

where U = eiϕ̂ , was made in [10]. Namely, an upper bound h̄ was found therein for the
product of uncertainties�Ĵ and �(ϕ̂) in the (normalized) coherent state |ξ〉, such that

h̄ > �ξ Ĵ�ξ (ϕ̂) >
h̄

2
. (1.6)

We point out that �(ϕ̂) cannot be identified with any uncertainty of the angle. Indeed, in
the eigenvector of Ĵ we have �Ĵ = 0 and �(ϕ̂) = ∞. But the maximal uncertainty for the
position of a particle on a circle is π , so�(ϕ̂) should be taken modulo π . Obviously,�Ĵ = 0
and �(ϕ̂) � π violate the inequality (1.4), a contradiction. It also seems unlikely that the
condition (1.6) allows unique determination of the coherent states. It thus appears that the
meaning of (1.4) both in the context of the quantum mechanics on a circle and corresponding
coherent states is dim. We finally note that the uncertainty relation (1.4) is implied by (2.5)
and the following inequality [11]:

〈A†A +AA†〉〈B†B + BB†〉 � |〈A†B − BA†〉|2 (1.7)

where we set A = Ĵ − 〈Ĵ 〉 and B = U − 〈U〉.
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2. Coherent states for the quantum mechanics on a circle

In this section we summarize the elementary facts about the coherent states for a quantum
particle on a circle [9, 10]. We begin by recalling the basic properties of the quantum mechanics
on a circle. Consider a free particle on a circle S1. The classical Hamiltonian is given by

H = 1
2J

2 (2.1)

where J is the angular momentum and we have assumed for simplicity that the particle has
unit mass and it moves in a unit circle. Clearly, we have the Poissson bracket of the form

{ϕ, J } = 1 (2.2)

where ϕ is the angle specifying the position on a circle. The Poisson bracket (2.2) leads
according to the rules of canonical quantization to the commutator

[ϕ̂, Ĵ ] = i (2.3)

where we set h̄ = 1. It can be demonstrated that the commutator (2.3) is defined only on the
zero vector. Therefore, a better candidate than ϕ̂ for representing the position of a quantum
particle on a circle is the unitary operator U such that

U = eiϕ̂ . (2.4)

An immediate consequence of (2.3) and (2.4) is the following algebra:

[Ĵ , U ] = U. (2.5)

We also point out that (2.5) can be obtained directly from (1.1) and (2.4). Consider the
eigenvalue equation

Ĵ |j 〉 = j |j 〉. (2.6)

From (2.5) and (2.6) it follows that the operators U and U † are the ladder operators, namely,

U |j 〉 = |j + 1〉 U †|j 〉 = |j − 1〉. (2.7)

Demanding the time-reversal invariance of the algebra (2.5) we find [9] that the eigenvalues j
of the operator Ĵ can only be an integer or half-integer. In this paper we restrict ourselves, for
simplicity, to the case with integer j. We finally write down the orthogonality and completeness
conditions satisfied by the vectors |j 〉 such that

〈j |k〉 = δjk (2.8)
∞∑

j=−∞
|j 〉〈j | = I. (2.9)

We now collect the basic facts about the coherent states for a particle on a circle. These
states can be defined by means of the eigenvalue equation [9]

Z|ξ〉 = ξ |ξ〉 (2.10)

where Z = e−Ĵ+ 1
2U , and the complex number ξ = e−l+iϕ parametrizes the circular cylinder

which is the classical phase space for the particle moving in a circle. We note that in view of
the identity

Z = ei(ϕ̂+iĴ ) (2.11)

(2.10) has a form analogous to the eigenvalue equation satisfied by the standard coherent states
|z〉 such that

eia|z〉 = eiz|z〉 (2.12)
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where a ∼ q̂ + ip̂ is the standard Bose annihilation operator and q̂ and p̂ are the position and
momentum observables, respectively. The projection of the vectors |ξ〉 onto the basis vectors
|j 〉 is given by

〈j |ξ〉 = ξ−j e− j2

2 . (2.13)

On using the parameters l and ϕ (2.13) can be written in the following equivalent form:

〈j |l, ϕ〉 = elj−ijϕ e− j2

2 (2.14)

where |l, ϕ〉 ≡ |ξ〉 with ξ = e−l+iϕ . The coherent states are not orthogonal. We have

〈ξ |η〉 =
∞∑

j=−∞
(ξ∗η)−j e−j2 = θ3

(
i

2π
ln ξ∗η

∣∣∣∣ i

π

)
(2.15a)

〈l, ϕ|h,ψ〉 = θ3

(
1

2π
(ϕ − ψ)− l + h

2

i

π

∣∣∣∣ i

π

)
(2.15b)

where θ3 is the Jacobi theta-function defined by

θ3(v|τ ) =
∞∑

n=−∞
qn

2
(eiπv)2n (2.16)

where q = eiπτ and Im τ > 0. It follows immediately from (2.15) that the squared norm of
the coherent states can be written in the form

〈ξ |ξ〉 = θ3

(
i

π
ln |ξ |

∣∣∣∣ i

π

)
(2.17a)

〈l, ϕ|l, ϕ〉 =
∞∑

j=−∞
e2lj e−j2 = θ3

(
il

π

∣∣∣∣ i

π

)
. (2.17b)

The expectation value of the angular momentum Ĵ in the coherent states obeys

〈ξ |Ĵ |ξ〉
〈ξ |ξ〉 ≈ l (2.18)

where the maximal error arising in the case l → 0 is of the order 0.1% and we have the
exact equality in the case of l, integer or half-integer. Therefore, the parameter l labelling
the coherent states can be interpreted as the classical angular momentum. The fact that the
parameter ϕ can be regarded as the classical angle is a consequence of the following formula
on the relative expectation value 〈U〉ξ /〈U〉1 := 〈ξ |U |ξ〉/〈1|U |1〉, which is the most natural
candidate to describe the average position on a circle:

〈U〉ξ
〈U〉1

≈ eiφ (2.19)

where the approximation is very good. More precisely, regardless of the concrete value of l,
the maximal error is of order 0.1%. In our opinion the meaning of (2.18) and (2.19) is that the
coherent states are as close as possible to the classical phase space.

3. Uncertainty relations for the quantum mechanics on a circle

Our purpose now is to introduce the uncertainties of the momentum and position for a quantum
particle on a circle. We first write down the following relation implied by (2.9), (2.17), (2.13)
and (2.16):

〈e−2λĴ 〉ξ = 〈ξ | e−2λĴ |ξ〉
〈ξ |ξ〉 = eλ

2−2lλ θ3(l − λ|iπ)
θ3(l|iπ) . (3.1)
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On setting λ = ±1 in (3.1) we get

〈e−2Ĵ 〉ξ = e1−2l 〈e2Ĵ 〉ξ = e1+2l . (3.2)

Further, using (2.9), (2.7), (2.13) and (2.16) we find

〈U 2〉ξ = 〈ξ |U 2|ξ〉
〈ξ |ξ〉 = e−1 e2iϕ. (3.3)

Equations (3.2) and (3.3) taken together yield the remarkable identity

〈e−2Ĵ 〉ξ 〈e2Ĵ 〉ξ = 1

|〈U 2〉ξ |2 . (3.4)

We now introduce the following measure of the uncertainty of the angular momentum:

�2
φ(Ĵ ) := 1

4 ln
(〈e−2Ĵ 〉φ〈e2Ĵ 〉φ

)
(3.5)

and the measure of the uncertainty of the angle

�2
φ(ϕ̂) := 1

4 ln
1∣∣〈U 2〉φ
∣∣2 (3.6)

where 〈A〉φ = 〈φ|A|φ〉/〈φ|φ〉, so the identity (3.4) can be written as

�2
ξ (Ĵ ) = �2

ξ (ϕ̂). (3.7)

Note that both uncertainties (3.5) and (3.6) are non-negative. Indeed, for arbitrary Hermitian
operatorX we have

〈eX〉〈e−X〉 � 1 (3.8)

following directly from the Schwarz inequality

〈A†A〉〈B†B〉 � |〈A†B〉|2 (3.9)

by putting A = e
X
2 and B = e− X

2 . An immediate consequence of (3.8) is the non-negativity
of�2

φ(Ĵ ). The inequality

1

|〈U 2〉|2 � 1 (3.10)

ensuring the positivity of �2
φ(ϕ̂) is implied by the well-known relation

|〈V 〉|2 � 1 (3.11)

which holds true for arbitrary unitary operator V . The inequality (3.11) can easily be obtained
from (3.9) by setting A = U and B = U 2.

At first sight the uncertainties (3.5) and (3.6) seem to be weird without any reference to
such measures of uncertainties as a standard variance. Nevertheless, we observe that (3.7) has
the identical form as the equation satisfied by the variances of the momentum and the position
in the standard coherent states for a particle on a real line

�2
zp̂ = �2

z q̂. (3.12)

Furthermore, we have the cumulant expansion

〈eX〉 = exp
(〈〈X〉〉 + 1

2! 〈〈X2〉〉 + 1
3! 〈〈X3〉〉 + 1

4! 〈〈X4〉〉 + · · ·) (3.13)

where 〈〈Xn〉〉, n = 1, 2, . . . , are the cumulants (semi-invariants). The first four cumulants are
obtained from moments as

〈〈X〉〉 = 〈X〉
〈〈X2〉〉 = 〈X2〉 − 〈X〉2

(3.14)
〈〈X3〉〉 = 〈X3〉 − 3〈X2〉〈X〉 + 2〈X〉3

〈〈X4〉〉 = 〈X4〉 − 4〈X3〉〈X〉 − 3〈X2〉2 + 12〈X2〉〈X〉2 − 6〈X〉4.



1410 K Kowalski and J Rembieliński

Note that the second cumulants are the usual variance. The third and fourth cumulants are
called skewness and curtosis, respectively. Using (3.13), (3.5) and (3.6) we get

�2
φ(Ĵ ) = 〈〈Ĵ 2〉〉φ + 1

3 〈〈Ĵ 4〉〉φ + 2
45 〈〈Ĵ 6〉〉φ + · · · (3.15)

�2
φ(ϕ̂) = 〈〈ϕ̂2〉〉φ − 1

3 〈〈ϕ̂4〉〉φ + 2
45 〈〈ϕ̂6〉〉φ + · · · . (3.16)

It thus appears that in the first approximation neglecting the cumulants of order four and
higher (even), the uncertainties (3.5) and (3.6) coincide with the usual variances of the angular
momentum and angle, respectively. We point out that �2

φ(Ĵ ) vanishes in the eigenstates |j 〉
of Ĵ when we know the exact value of the angular momentum, and is infinite in the eigenstate
|ϕ〉 of the operator U corresponding to the fixed position on a circle. Analogously, �2

φ(ϕ̂)

vanishes in the state |ϕ〉 and is infinite in the state |j 〉. We conclude that the uncertainties (3.5)
and (3.6) behave correctly in the states with fixed angular momentum and angle. Last, but
not least, we note that the relations (3.2) and (3.3) take place in the case with the half-integer
eigenvalues of Ĵ also.

We now discuss the uncertainty relations for the quantum mechanics on a circle. Equations
(3.2)–(3.6) taken together yield

�2
ξ (Ĵ ) = 1

2 �2
ξ (ϕ̂) = 1

2 (3.17)

so that

�2
ξ (Ĵ ) +�2

ξ (ϕ̂) = 1. (3.18)

The identity (3.18) indicates the following form of the uncertainty relations for a quantum
particle on a circle,

�2(Ĵ ) +�2(ϕ̂) � 1 (3.19)

minimized at the coherent states. The uncertainty relations (3.19) are supported by the
numerical calculations (see figure 1(b)). We finally point out that (3.19) has the form identical
to the uncertainty relations for the sum of variances of the position and momentum of a particle
on a real line implied by the standard Heisenberg uncertainty relations of the form

�2p̂ +�2q̂ � 1 (3.20)

where we set h̄ = 1.

4. Squeezed states for the quantum mechanics on a circle

We finally study the squeezed states for the quantum mechanics on a circle and the connected
uncertainty relations. We first observe that the eigenvectors of the operators a(s) defined as
[12]

a(s) = e−s p̂2

2 q̂ es
p̂2

2 = q̂ + isp̂ (4.1)

where q̂ and p̂ are the standard position and momentum operators, respectively, and s > 0
is a real parameter, are the standard squeezed states. In analogy to (4.1) we introduce the
operators Z(s) such that

Z(s) = e−s Ĵ2

2 U es
Ĵ

2

2 = e−s(Ĵ− 1
2 )U (4.2)

and define the squeezed states |ξ〉s for a quantum particle on a circle by

Z(s)|ξ〉s = ξ |ξ〉s . (4.3)
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(a)

(c)

(b)

Figure 1. The plot of �̃2
ξ,s,s0

(Ĵ ) + �2
ξ,s (ϕ̂) (compare (4.15)), for (a) s0 = 0.5, (b) s0 = 1 and

(c) s0 = 1.5, where �̃2
ξ,s,s0

(Ĵ ) = 1
4 ln(〈e−2s0 Ĵ 〉φ〈e2s0 Ĵ 〉φ) and the expectation values from the

argument of the logarithm are determined from (3.1) with λ = ±s0 and l = 1; the uncertainty
of the angle given by (4.13), (3.6) and (4.10) is s/2. In accordance with (4.15) and (4.14) the
coordinates of the minima are (s0, s0) (see also figure 2). We point out that the case (b) with s0 = 1
refers to the coherent states. More precisely, we have �̃2

ξ,s,s0
(Ĵ ) +�2

ξ,s (ϕ̂) ≡ �2
ξ,s (Ĵ ) +�2

ξ,s (ϕ̂).

It should be noted that in view of (4.2) the coherent states for a particle on a circle satisfying
(2.10) correspond to the particular case s = 1. We also note that we have a generalization of
the formula (2.11) such that

Z(s) = ei(ϕ̂+isĴ ). (4.4)

Therefore, the squeezed states are related with the scaling of the angular momentum. Making
use of (4.3), (4.2), (2.6) and (2.7) we easily obtain the following generalizations of the relations
(2.12) and (2.13):

〈j |ξ〉s = ξ−j e− sj2

2 (4.5a)

〈j |l, ϕ〉s = elj−ijϕ e− sj2

2 (4.5b)
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where |l, ϕ〉s ≡ |ξ〉s . From (4.5) and (2.9) we derive the overlap integrals such that

s〈ξ |η〉s =
∞∑

j=−∞
(ξ∗η)−j e−sj2 = θ3

(
i

2π
ln ξ∗η

∣∣∣∣ is

π

)
(4.6a)

s〈l, ϕ|h,ψ〉s = θ3

(
1

2π
(ϕ − ψ)− l + h

2

i

π

∣∣∣∣ is

π

)
(4.6b)

leading to the following expression on the squared norm of the squeezed states:

s〈ξ |ξ〉s = θ3

(
i

π
ln |ξ |

∣∣∣∣ isπ
)

(4.7a)

s〈l, ϕ|l, ϕ〉s =
∞∑

j=−∞
e2lj e−sj2 = θ3

(
il

π

∣∣∣∣ is

π

)
. (4.7b)

We point out that the above formulae imply positivity of the parameter s. We also recall that
we study the case of the integer eigenvalues of the operator Ĵ .

We now examine the uncertainties in the squeezed states. Taking into account (2.9), (2.6),
(4.5) and (4.7) we get a generalization of (3.1)

〈e−2λĴ 〉ξ,s = s〈ξ | e−2λĴ |ξ〉s
s〈ξ |ξ〉s = e

λ2

s
− 2lλ

s

θ3

(
l−λ
s

∣∣∣ iπ
s

)
θ3

(
l
s

∣∣∣ iπ
s

) . (4.8)

Hence, putting λ = ±s, we find

〈e−2sĴ 〉ξ,s = es−2l 〈e2sĴ 〉ξ,s = es+2l . (4.9)

We also have the generalization of (3.3) of the form

〈U 2〉ξ,s = s〈ξ |U 2|ξ〉s
s〈ξ |ξ〉s = e−s e2iϕ. (4.10)

By (4.9) and (4.10)

〈e−2sĴ 〉ξ,s〈e2sĴ 〉ξ,s = 1

|〈U 2〉ξ,s |2 (4.11)

which leads to the following most natural generalization of the uncertainties (3.5) and (3.6) of
the angular momentum and angle, respectively:

�̃2
φ,s0
(Ĵ ) = 1

4 ln
(〈e−2s0 Ĵ 〉φ〈e2s0Ĵ 〉φ

)
(4.12)

�2
φ,s0
(ϕ̂) ≡ �2

φ(ϕ̂). (4.13)

Using the uncertainties (4.12) and (4.13) we arrive at the identity

�̃2
ξ,s0,s0

(Ĵ ) = �2
ξ,s0,s0

(ϕ̂) = s0

2
(4.14)

indicating the generalized uncertainty relations such that

�̃2
φ,s0
(Ĵ ) +�2

φ(ϕ̂) � s0 (4.15)

where the equality is reached in the squeezed state |ξ〉s0 . The uncertainty relations (4.15) are
corroborated by the numerical calculations (see figures 1 and 2).
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Figure 2. The plot of minima of the function from figure 1. As expected in view of (4.15) and
(4.14) smin = s0, and �̃2

ξ,smin ,s0
(Ĵ ) +�2

ξ,smin
(ϕ̂) = s0.

5. Discussion

In this paper we have identified the uncertainties and uncertainty relations for the quantum
mechanics on a circle minimized by the corresponding coherent states. We have also introduced
the squeezed states generalizing the coherent states for a quantum particle on a circle and
found the appropriate uncertainty relations saturated by these states. Note that generalized
uncertainty relations (4.15), where the uncertainties are given by (4.12) and (4.13), do not
provide any criterion for distinguishing coherent and squeezed states as in the case with the
quantum mechanics on a real line. The situation is even more complicated in view of the fact
that the squeezed states with different s are not related by a unitary transformation. Namely,
we have

|ξ〉s = e−(s−s0)Ĵ 2/2|ξ〉s0 .
Thus, the states with different s are not unitarily equivalent and the problem naturally arises
concerning the physical interpretation of the (dimensionless) parameter s. We point out that
in the case of the standard squeezed states for a particle on a real line the states with different
squeezing are related by a unitary transformation.
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[8] Bluhm R, Kostelecký V A and Tudose B 1995 Phys. Rev. A 52 2234
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[10] Gonzáles J A and del Olmo M A 1998 J. Phys. A: Math. Gen. 31 8841
[11] Peres A 1998 Quantum Theory: Concepts and Methods (Dordrecht: Kluwer)
[12] Hall B C and Mitchell J J 2001 Preprint arXiv quant-ph/0109086


